IMPROVING THE AI STOCK MARKET FORECASTING WITH CANDLESTICK PATTERNS

Authors

  • Oleksandr Zakovorotnyi
  • Nataliia Ausheva
  • Larysa Levchenko

DOI:

https://doi.org/10.26906/SUNZ.2025.4.074

Keywords:

artificial intelligence, LSTM model efficiency, stock market prediction, candlestick patterns, improving AI model accuracy

Abstract

In the rapidly evolving digital economy, the application of Artificial Intelligence (AI) in financial forecasting has gained significant traction. This study investigates the effect of various candlestick patterns on the performance of Long Short-Term Memory (LSTM) models in predicting stock market movements. Experiments conducted on the stock price history data demonstrate that supplementing traditional input parameters (e.g., open price) with a range of candlestick patterns enhances the predictive accuracy of LSTM models. Although the initial model architecture lacked hyperparameter optimization for solving this kind of task, our findings suggest notable improvement in prediction performance when candlestick pattern flags are incorporated. Future work will focus on incorporating additional financial indicators into the model's training data and fine-tuning it through optimization algorithms to achieve greater robustness and accuracy.

Downloads

Download data is not yet available.

References

1. Telukdarie, A., & Mungar, A. (2022). The Impact of Digital Financial Technology on Accelerating Financial Inclusion in Developing Economies. https://doi.org/10.1016/j.procs.2022.12.263. DOI: https://doi.org/10.1016/j.procs.2022.12.263

2. Basuki, S. A., Nahar, A., & Ridho, M. (2017). Conservatism Accountancy, Profit Persistence and Systematic Risk Towards the Earnings Responses Coefficient. https://doi.org/10.1016/j.procs.2022.12.263. DOI: https://doi.org/10.29259/sijdeb.v1i1.77-102

3. Strader, T. J., Rozycki, J. J., Root, T. H., & Huang, Y. H. J. (2020). Machine learning stock market prediction studies: Review and research directions // Journal of International Technology and Information Management. – Vol. 28, No. 4. – P. 63–83. https://doi.org/10.58729/1941-6679.1435. DOI: https://doi.org/10.58729/1941-6679.1435

4. Parmar, I., Agarwal, N., Saxena, S., Arora, R., Gupta, S., Dhiman, H., & Chouhan, L. (2018). Stock market prediction using machine learning // Proceedings of the 1st International Conference on Secure Cyber Computing and Communication (ICSCCC). – IEEE, 2018. – P. 574–576. DOI: 10.1109/ICSCCC.2018.8703332. DOI: https://doi.org/10.1109/ICSCCC.2018.8703332

5. Najem, R., Amr, M. F., Bahnasse, A., & Talea, M. (2023). A Comprehensive Analysis of Techniques and Case Studies [Electronic resource]. – Available at: https://www.sciencedirect.com/science/article/pii/S1877050923022056

6. Бовчалюк, С. Я., & Гайдай, Я. А. (2024). Аналіз методу опорних векторів у порівнянні з традиційними методами передбачення ринкових рухів // Системи управління, навігації та зв’язку. – 2024. – № 2(72). – С. 78–84. https://doi.org/10.26906/SUNZ.2024.3.089. DOI: https://doi.org/10.26906/SUNZ.2024.3.089

7. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory // Neural Computation. – Vol. 9, No. 8. – P. 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 DOI: https://doi.org/10.1162/neco.1997.9.8.1735

8. Burak Gülmez (2023). Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm. ScienceDirect. https://doi.org/10.1016/j.eswa.2023.120346. DOI: https://doi.org/10.1016/j.eswa.2023.120346

9. John Kamwele Mutinda, Amos Kipkorir Langat (2024). Stock price prediction using combined GARCH-AI models. ScienceDirect. https://doi.org/10.1016/j.sciaf.2024.e02374. DOI: https://doi.org/10.1016/j.sciaf.2024.e02374

10. Xinyuan Songet (2023). Predicting stock price of construction companies using weighted ensemble learning. ScienceDirect. https://doi.org/10.1016/j.heliyon.2024.e31604. DOI: https://doi.org/10.1016/j.heliyon.2024.e31604

11. Weilong Hu, Yain-Whar Si, Simon Fong, Raymond Yiu Keung Lau (2019). A formal approach to candlestick pattern classification in financial time series. Soft Computing Journal. https://doi.org/10.1016/j.asoc.2019.105700. DOI: https://doi.org/10.1016/j.asoc.2019.105700

Downloads

Published

2025-12-02